Self-adapting hybrid strategy particle swarm optimization algorithm

نویسندگان

  • Chuan Wang
  • Yancheng Liu
  • Yang Chen
  • Yi Wei
چکیده

Particle swarm optimization (PSO) algorithm has shown promising performances on various benchmark functions and engineering optimization problems. However, it is still difficult to achieve a satisfying trade-off between exploration and exploitation for all the optimizationproblems and different evolving stages. Furthermore, control parameters of some related mechanisms need pre-experience by the requirement of trial-and-error scheme. This paper presents a novel PSOalgorithm,which adaptively adopts various search strategies, called Self-adapting Hybrid Strategy PSO (SaHSPS). Unlike some other peer PSO variants, this method dynamically changes the probabilities of different strategies according to their previous successful searching memories, without any additional control parameters. The probabilities of different strategies would be re-initialized according to a proposed dynamic probabilistic model to diverse the population. Besides, particles are updated by probabilistically selected strategies after niching PSO with Ring topology. Moreover, a dynamic updating mechanism by niching PSO is proposed to guarantee the parallel searching capability during the whole evolution process. Thus, this proposed algorithm might be problem-independent and search-stageCommunicated by V. Loia. B Yancheng Liu [email protected] Chuan Wang [email protected] Yang Chen [email protected] Yi Wei [email protected] 1 Marine Engineering College, Dalian Maritime University, Dalian 116026, People’s Republic of China independent, yielding more satisfying solutions on various optimization problems.A comprehensive experimental study is conducted on 28 benchmark functions ofCEC2013 special session on real-parameter optimization, including shifted, rotated, multi-modal, high conditioned, expanded and composition problems, compared with several state-of-the-art variants of PSO and differential evolution (DE) algorithms. Comparison results show that SaHSPS obtains outstanding performances on themajority of the test problems.Moreover, a practical engineering problem, real power loss minimization of IEEE 30-bus power system, is used to further evaluate SaHSPS. The numerical results, compared with other stochastic search algorithms, show that SaHSPS could find high-quality solutions with higher probability.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Frequency Control of Isolated Hybrid Power Network Using Genetic Algorithm and Particle Swarm Optimization

This paper, presents a suitable control system to manage energy in distributed power generation system with a Battery Energy Storage Station and fuel cell. First, proper Dynamic Shape Modeling is prepared. Second, control system is proposed which is based on Classic Controller. This model is educated with Genetic Algorithm and particle swarm optimization. The proposed strategy is compared with ...

متن کامل

Reactive Power Dispatch Based on Self-Adaptive Differential Evolution Hybrid Particle Swarm Optimization

Reactive power dispatch, which may have many local optima, is an important and challenging task in the operation and control of electric power system. This paper presents a Selfadapti ve Differential Evolution hybrid Particle Swarm (SaDEPS) optimization algorithm for optimal reactive power dispatch problem. In this method, each particle is updated by a randomly selected strategy from a candidat...

متن کامل

Diversified Particle Swarm Optimization for Hybrid Flowshop Scheduling

The aim of this paper is to propose a new particle swarm optimization algorithm to solve a hybrid flowshop scheduling with sequence-dependent setup times problem, which is of great importance in the industrial context. This algorithm is called diversified particle swarm optimization algorithm which is a generalization of particle swarm optimization algorithm and inspired by an anarchic society ...

متن کامل

AN EFFICIENT HYBRID ALGORITHM BASED ON PARTICLE SWARM AND SIMULATED ANNEALING FOR OPTIMAL DESIGN OF SPACE TRUSSES

In this paper, an efficient optimization algorithm is proposed based on Particle Swarm Optimization (PSO) and Simulated Annealing (SA) to optimize truss structures. The proposed algorithm utilizes the PSO for finding high fitness regions in the search space and the SA is used to perform further investigation in these regions. This strategy helps to use of information obtained by swarm in an opt...

متن کامل

Optimization of grid independent diesel-based hybrid system for power generation using improved particle swarm optimization algorithm

The power supply of remote sites and applications at minimal cost and with low emissions is an important issue when discussing future energy concepts. This paper presents modeling and optimization of a photovoltaic (PV)/wind/diesel system with batteries storage for electrification to an off-grid remote area located in Rafsanjan, Iran. For this location, different hybrid systems are studied and ...

متن کامل

A New Shuffled Sub-swarm Particle Swarm Optimization Algorithm for Speech Enhancement

In this paper, we propose a novel algorithm to enhance the noisy speech in the framework of dual-channel speech enhancement. The new method is a hybrid optimization algorithm, which employs the  combination of  the  conventional θ-PSO and the shuffled sub-swarms particle optimization (SSPSO) technique. It is known that the θ-PSO algorithm has better optimization performance than standard PSO al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Soft Comput.

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2016